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Agenda

Plan for this evening

History of Al + Robotics

Deep Learning and Computer Vision
Autonomous Driving, E2E Driving
Research at Wayve

Parting Thoughts

Q&A



Al + Robotics

B



Early Beginnings

Al + Robotics

e Imitation Game (aka the “Turing Test”)

coined by Alan Turing in 1950

e Dartmouth Workshop organized by
McCarthy, Minsky, Rochester, and
Shannon in 1956

e Unimate, the first industrial robot, was

built in 1961
e Shakey the Robot, the first general

purpose robot, is developed at SRI from

1966-1972
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A PROPOSAL FOR THE DARTMOUTH
SUMMER RESEARCH PROJECT ON
ARTIFICIAL INTELLIGENCE

J. McCarthy, Dartmouth College

M. L. Minsky, Harvard University

N. Rochester, I.B.M. Corporation
C.E. Shannon, Bell Telephone Laboralories

August 31, 1955

We propose that a 2 month, 10 man study of artificial intelligence be carried
out during the summer of 1956 at Dartmouth College in Hanover, New Hamp-
shire. The study is to proceed on the basis of the conjecture that every aspect
of learning or any other feature of intelligence can in principle be so precisely
described that a machine can be made to simulate it. An attempt will be made
to find how to make machines use language, form abstractions and concepts,
solve kinds of problems now reserved for humans, and improve themselves. We
think that a significant advance can be madce in one or more of these problems
if a carcfully sclected group of scientists work on it together for a summer.

The following are some aspects of the artificial intelligence problem: |

Automatic Computers

If a machine can do a job, then an automatic calculator can be programmed
to simulate the machine. The speeds and memory capacities of present com-
puters may be insufficient to simulate many of the higher functions of the

human brain, but the major obstacle is not lack of machine capacity, but
halits: + teit o taline £l o oo £ aachat 1 9

/

© Source: McCarthy, J,, et al. (1955). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence.



Milestones in Robotics
Al + Robotics

® 1966s-1972s: Shakey (first general-purpose robot)
e 1980s-90s: Autonomous vehicles (DARPA-funded, like ALVINN)
e Late 90s, 2000s: Introduction of ASIMO by Honda, Boston Dynamics



http://www.youtube.com/watch?v=7bsEN8mwUB8

Al Winter(s)

Al + Robotics

e First winter in 1974-1980, second winter (the one you might be more familiar with)
was 1987-2000.

e Causes: Unrealistic expectations, limited computing power
Impact: Funding cuts, skepticism among researchers

Turing test invented First Al winter ~ Second Al winter
1980 2012
< ® O @ ® O
1950 1973 1988 2019
Boom times Deep learning

revolution
Source: Schuchmann, S. (2019). History of the first Al Winter.



Resurgence of Al: Al Spring 2012

e Keyevents: ImageNet (and AlexNet), advances in deep learning
e Moore's Law: Driving the computational power necessary for breakthroughs
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Al has surpassed humans at a number of tasks and the rate at
which humans are being surpassed at new tasks is increasing

State-of-the-art Al performance on benchmarks, relative to human performance
Image recognition @ Reading comprehension
Code generation

Grade school math

@ Handwriting recognition @ Speech recognition
(@ Language understanding ) Common sense completion

Human perfomance = 100%

2020 2022

ContextualAl

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 26%8



Embodied Al

Al + Robotics

e Systems that perceive, interact, and learn from the physical world
e Examples: Robotics in manufacturing, smart home assistants, self-driving cars
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Deep Learning
_|_

Computer Vision
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ImageNet Moment

Deep Learning + Computer Vision

Database launches at CVPR 2009, competition launches in 2010

2010-2012 dominated by classical models (e.g. SVMs)

2012: AlexNet winning ImageNet competition, sparking renewed interest in neural
networks (and GPU training!)

2015: Superseded by “Very Deep CNNs” or ResNets
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Object Detection, Segmentation

Deep Learning + Computer Vision

e Earlyexample: SegNet (Vijay Badrinarayanan, Alex Kendall, Roberto Cipolla)
e Key models: YOLO, Faster R-CNN, Mask R-CNN, DETR
e Applications: Self-driving cars, healthcare, industrial automation

) predictions.jpg

X
RS =8

Convolutional Encoder-Decoder

Output

Pooling Indices
.
RGB Image [ conv + Batch Normalisation + RelU

I Pooling [ Upsampling Softmax

Segmentation

Fig. 2. An illustration of the SegNet architecture. There are no fully connected layers and hence it is only convolutional. A decoder upsamples its
input using the transferred pool indices from its encoder to produce a sparse feature map(s). It then performs convolution with a trainable filter bank
to densify the feature map. The final decoder output feature maps are fed to a soft-max classifier for pixel-wise classification.

© Source: Schuchmann, S. (2019). History of the first Al Winter.
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Transfer Learning

Deep Learning + Computer Vision

e Using pre-trained models for new tasks (CLIP, DINO)
e Reducing training times, increasing accessibility of Al tools

— Iy IyT, IyT, IyTs InTy




Wayve @ OSU Al Club

Explainability

e Safety-critical applications like
healthcare and autonomous driving
require explainability

e Methods: Saliency maps, feature
visualization

Image

Input
gradient [7]

Integrated
gradient [1]

Smooth-grad
[16]

Grad-CAM
[15]

FullGrad
(Ours)



3D (and 4D)

Deep Learning + Computer Vision

e Understanding depth (3D) and time (4D) in real-world perception
e Simultaneous Localization and Mapping (SLAM), 3D object detection, etc
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http://www.youtube.com/watch?v=kI7wCEAFFb0

Autonomous Driving




Why AV?
Autonomous Driving

Reliable robots

Easy to collect expert demonstrations

Expert demonstrations come with lots of diversity, utility, volume
Valuable service (utility, safety, efficiency, ...)



The Problem

Autonomous Driving

AV1.0

Sensors > Perception > Planning > Control

Camera ) ( LaneDetecion ) 1 ( Routeplanning ) @ PID Controller )
Ragar P L( Traffic Light Detection }—!C Prediction ) ( Model predictive Control )
LIDAR iﬁ Traffic Sign Detection )7 ‘ (_ BehaviorPlanning ) ( Others )
Object Detection &Tracking)—;——J—C Trajectory Planning )

( Free Space Detection )—‘—
——{ Localization )—{ HD Map )

j,/

GPS

N N A N

Others
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SLAM and Mapping

Autonomous Driving

e Techniques: Using sensors to build and update maps in real-time
e |mportance: Localization and navigation for autonomous systems

20



Challenges of Modular Approach

Autonomous Driving

® Rule-based systems: Hand-coded rules and logic
e Long-tail makes or breaks driving: complex, unpredictable environments

21



Driving

AV 2.0






AV2.0

E2E Driving

AV2.0

Sensors End-to-end Al

_— ° o
Camera ‘ y Yo \

.
Radar / LIDAR A
C s - Jle

L ]

Safety Expert Sub-System

Control

Verified Motion Plan

Drive-By-Wire
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Advantages
E2E Driving

Wayve's Approach: Using E2E learning for real-world driving in complex cities

Simplifying the traditional autonomous vehicle stack
Potential for improved generalization and adaptability
Reduced engineering complexity

Faster adaptation to new environments
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Approaches

Imitation Learning (IL)

IL tries to copy the most “popular”

positive demonstration.

Reinforcement learning (RL)

RL tries to seek positive feedback while
avoiding negative feedback.
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Imitation Learning

Expert
Demonstrations

7(s) =argmin E [(£ (s, )]
rell  S~dr
State/Action Pairs Learning
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Imitation Learning

Does it work?

Real-time (17Hz)



http://www.youtube.com/watch?v=ox_uJd6yHzo&t=17
http://www.youtube.com/watch?v=p8QsuOy6f_c&t=298

Accumulating errors in IL

Imitation Learning

Imitation Learning often encounters accumulating errors when deployed in practice due to
distribution shift: the data-collecting policy differs from the learned policy

- = training trajectory
. = my expected trajectory




DAgger

Imitation Learning
Idea: Solve distribution shift by collecting expert demonstrations on-policy!

1. train mp(a¢|os) from human data D = {01,a1,...,0x,an}
2. run 7y (a;|os) to get dataset D, = {o01,...,0x}

3. Ask human to label D, with actions a, |

4. Aggregate: D« DUD,

: o
i — s 7r9(at|0t)
[( ': O¢ ay
.
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IL limitations

Imitation learning

e |L cannot perform better than human expert. DAgger is expensive in the real world!

e Can we learn from non-expert data and perform better than human experts?
o Can we learn about the action that directly takes us from A to C?




Types of RL Algorithms

On-policy

Improve the policy with data collected by

the current policy.

Collect Data

Collect Data
« I
—_— Fe, ]
W
01 1 G 01 1
10101 L & 10101
(;on':‘, (oo-
Train Model -® Train Model -®

©

Off-policy

Improve the policy with data collected by
any policy.

AN
0 o I

-«

(---’ » Train Model
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Types of RL Algorithms

Model-free Model-based
Training (and inference) have access to Training (and inference) have access to
experience only. both experience and a world model.
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Types of RL Algorithms

RL Algorithms
|
¢ 3
Model-Free RL Model-Based RL
¢ | ! { | P!
Policy Optimization Q-Learning Learn the Model Given the Model
Policy Gradient <— —— —> DQN —>{ World Models ‘ —% AlphaZero
—_— — DDPG R — —_— P — —_—
A2C / A3C <— —————— —> C51 —>{ 12A ‘
— —> D3 «] J— J—
PPO — — ——>  QR-DQN —>| MBMF \
—> SAC ] D — —
TRPO D — —> HER —>‘ MBVE ‘



Q-Learning

Reinforcement Learning

Off-policy RL algorithm that estimates expected future rewards (Q-value) given an
action-state pair

Updates are made using the Bellman equation:

Q(s,a) < Q(s,a) + a |R(s,a) + ymax Q(s',a’) — Q(s, a)

a

36



DOL

Use a neural network to learn the Q function!

37


http://www.youtube.com/watch?v=TmPfTpjtdgg
http://www.youtube.com/watch?v=W2CAghUiofY

Actor Critic

Reinforcement Learning

e Actor: learns to maximize performance

under critic
o Trained with policy gradients

fit V7

fit a model to
F estimate return

e Critic: learns to estimate action-values generate
o Trained with Monte Carlo / TD updates samples (i.e.

run the policy)

Basic recipe covers all modern model-free RL ;

algorithms (e.g., SAC, PPO, TD3)

Source: Levine, S., et al. (2020). Deep Reinforcement Learning.

improve the
policy

9(—9+OAV9J
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Offline RL

Reinforcement Learning

Uses pre-collected data to train a policy without needing to directly interact with the
environment

Can greatly improve scale as data collection is cheaper than deployment

offline reinforcement learning
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Mixed Online/Offline RL

Reinforcement Learning

Some approaches provide for mixing on-policy and off-policy data
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http://www.youtube.com/watch?v=W4joe3zzglU&t=3

Research at Wayve




History

Research @ Wayve

2017: Founded in Cambridge

2019: Wayve was the first company to demonstrate an
end-to-end learned driving system on UK public roads
2022: Demonstrated Al model driving multiple types of
vehicles and in multiple cities across the UK
2023-Present: ...

WAYVE
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4X SPEED



http://www.youtube.com/watch?v=ekLdrrpmNXI&t=3

GAIA



World Modelling

GAIA-1

2@ -

“I am approaching a
crossing yielding
to pedestrians”

“It is safe to move
so I am now
accelerating”

Hu, A, et al. (2023). GAIA-1: A Generative World Model for Autonomous Driving. http://arxiv.org/abs/2309.17080
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4X SPEED

i L R



http://www.youtube.com/watch?v=cwJ_TV9Daqo



http://www.youtube.com/watch?v=GkNktnHy8-Q

Controlling Dynamic Agents

GAIA-1

Extension to GAIA-1 demonstrated at CVPR 2024...

48



Controlling Dynamic Agents

GAIA-1

Extension to GAIA-1 demonstrated at CVPR 2024...




RISM + Ghost Gym



Scene Reconstruction
Ghost Gym & PRISM

S1





http://www.youtube.com/watch?v=IX4SmbmeeWo



http://www.youtube.com/watch?v=6QM7feimDO0
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http://www.youtube.com/watch?v=9klERYE_FLo

LINGO



Language
LINGO-1 & LINGO-2

Learned queries —»

Text —»

Video input

Wayve

"--’ 1
Vision
Model

>

Language
Model

— Driving action

—» Text

Source: Marcu, A, et al. (2023). LingoQA: Visual Question Answering for Autonomous Driving.
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http://www.youtube.com/watch?v=EgkfZjZmPZQ
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http://www.youtube.com/watch?v=cpZHNH8_4Zg
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http://www.youtube.com/watch?v=mU3TFv9Zi4I

Counterfactuals (GAIA + LINGO

LINGO

Original

predictéd waypoints

Increasing speed to match the speed limit. Stopping due to the red light.

predicted waypoints

@ Slowing down to match the lead vehicle's speed. Stopping behind the stationary traffic.
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Foundation Models



Foundation Models Today

Foundation Models

e Examples
o Language: GPT, Gemini, Llama
o Vision: CLIP, DINO, JEPA, MAE
o Embodied: OpenVLA, 0
e Challenges
o Many robotics tasks need great video features that include 3D/4D understanding!
o Many robotics tasks require inference at > XX Hz frequencies!
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FMs < Robotics

Foundation Models

/)

Internet-scale pre-training Open X-Embodiment Dataset

T dataset: multiple dexterous robots

71RO & o
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Parting Thoughts




Takeaways
Parting Thoughts

Simple objectives perform surprisingly well when trained at scale (in terms of both
model size and data corpus size)

The trend across robotics is moving from modular systems to end-to-end systems,
including our simulators

Foundation models are increasingly becoming critical components of embodied
systems

Diversity, quantity, and quality of data is key to solving robotics
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