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● History of AI + Robotics
● Deep Learning and Computer Vision
● Autonomous Driving, E2E Driving
● Research at Wayve
● Parting Thoughts
● Q&A
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Agenda
Plan for this evening



AI + Robotics
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● Imitation Game (aka the “Turing Test”) 
coined by Alan Turing in 1950

● Dartmouth Workshop organized by 
McCarthy, Minsky, Rochester, and 
Shannon in 1956

● Unimate, the first industrial robot, was 
built in 1961

● Shakey the Robot, the first general 
purpose robot, is developed at SRI from 
1966–1972
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Early Beginnings
AI + Robotics

Source: McCarthy, J., et al. (1955). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence.



● 1966s–1972s: Shakey (first general-purpose robot)
● 1980s–90s: Autonomous vehicles (DARPA-funded, like ALVINN)
● Late 90s, 2000s: Introduction of ASIMO by Honda, Boston Dynamics
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Milestones in Robotics
AI + Robotics

http://www.youtube.com/watch?v=7bsEN8mwUB8


● First winter in 1974–1980, second winter (the one you might be more familiar with) 
was 1987-2000.

● Causes: Unrealistic expectations, limited computing power
● Impact: Funding cuts, skepticism among researchers
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AI Winter(s)
AI + Robotics

Source: Schuchmann, S. (2019). History of the first AI Winter.



● Key events: ImageNet (and AlexNet), advances in deep learning
● Moore's Law: Driving the computational power necessary for breakthroughs
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Resurgence of AI: AI Spring 2012
AI + Robotics
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● Systems that perceive, interact, and learn from the physical world
● Examples: Robotics in manufacturing, smart home assistants, self-driving cars
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Embodied AI
AI + Robotics



Deep Learning
+

Computer Vision
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● Database launches at CVPR 2009, competition launches in 2010
● 2010-2012 dominated by classical models (e.g. SVMs)
● 2012: AlexNet winning ImageNet competition, sparking renewed interest in neural 

networks (and GPU training!)
● 2015: Superseded by “Very Deep CNNs” or ResNets
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ImageNet Moment
Deep Learning + Computer Vision



● Early example: SegNet (Vijay Badrinarayanan, Alex Kendall, Roberto Cipolla)
● Key models: YOLO, Faster R-CNN, Mask R-CNN, DETR
● Applications: Self-driving cars, healthcare, industrial automation
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Object Detection, Segmentation
Deep Learning + Computer Vision

Source: Schuchmann, S. (2019). History of the first AI Winter.



● Using pre-trained models for new tasks (CLIP, DINO)
● Reducing training times, increasing accessibility of AI tools
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Transfer Learning
Deep Learning + Computer Vision

Source: Radford, A., et al. (2021). Learning Transferable Visual Models From Natural Language Supervision.
Source: Caron, M., et al. (2021) Emerging Properties in Self-Supervised Vision Transformers.



● Safety-critical applications like 
healthcare and autonomous driving 
require explainability

● Methods: Saliency maps, feature 
visualization
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Wayve @ OSU AI Club

Explainability
Deep Learning + Computer Vision

Source: Srinivas, S., Fleuret, Francois. (2019). Full-Gradient Representation for Neural Network Visualization.



● Understanding depth (3D) and time (4D) in real-world perception
● Simultaneous Localization and Mapping (SLAM), 3D object detection, etc
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3D (and 4D)
Deep Learning + Computer Vision

Source: Wang, S., et al. (2023). DUSt3R: Geometric 3D Vision Made Easy.

http://www.youtube.com/watch?v=kI7wCEAFFb0


Autonomous Driving
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● Reliable robots
● Easy to collect expert demonstrations
● Expert demonstrations come with lots of diversity, utility, volume
● Valuable service (utility, safety, efficiency, …)
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Why AV?
Autonomous Driving
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The Problem
Autonomous Driving



● Techniques: Using sensors to build and update maps in real-time
● Importance: Localization and navigation for autonomous systems
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SLAM and Mapping
Autonomous Driving

Source: Mur-Artal, R., et al. (2015). ORB-SLAM: a Versatile and Accurate Monocular SLAM System.
Source: Waymo Team. (2016). Building maps for a self-driving car. 



● Rule-based systems: Hand-coded rules and logic
● Long-tail makes or breaks driving: complex, unpredictable environments
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Challenges of Modular Approach
Autonomous Driving



E2E Driving
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AV 2.0
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AV2.0
E2E Driving



Wayve's Approach: Using E2E learning for real-world driving in complex cities

● Simplifying the traditional autonomous vehicle stack
● Potential for improved generalization and adaptability
● Reduced engineering complexity
● Faster adaptation to new environments

25

Advantages
E2E Driving
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Approaches

IL tries to copy the most “popular” 
positive demonstration.

Imitation Learning (IL) Reinforcement learning (RL)

RL tries to seek positive feedback while 
avoiding negative feedback.
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Expert 
Demonstrations State/Action Pairs Learning

Imitation Learning



Imitation Learning
Does it work?

http://www.youtube.com/watch?v=ox_uJd6yHzo&t=17
http://www.youtube.com/watch?v=p8QsuOy6f_c&t=298


Imitation Learning often encounters accumulating errors when deployed in practice due to 
distribution shift: the data-collecting policy differs from the learned policy

Accumulating errors in IL
Imitation Learning

Source: Levine, S., et al. (2020). Deep Reinforcement Learning.
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DAgger
Imitation Learning

Idea: Solve distribution shift by collecting expert demonstrations on-policy!

Source: Ross, S., et al. (2010). A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
Source: Levine, S., et al. (2020). Deep Reinforcement Learning.



● IL cannot perform better than human expert. DAgger is expensive in the real world! 
● Can we learn from non-expert data and perform better than human experts?

○ Can we learn about the action that directly takes us from A to C?

IL limitations
Imitation learning

A

B

C



Improve the policy with data collected by 
the current policy.

On-policy Off-policy

Improve the policy with data collected by 
any policy.

Types of RL Algorithms

Collect Data Collect Data

Train ModelTrain Model

Collect + Store Data

Train Model



Training (and inference) have access to 
experience only.

Model-free Model-based

Training (and inference) have access to 
both experience and a world model.

Types of RL Algorithms
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Types of RL Algorithms

Source: Achiam, J. Spinning Up.



Off-policy RL algorithm that estimates expected future rewards (Q-value) given an 
action-state pair

Updates are made using the Bellman equation:
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Q-Learning
Reinforcement Learning



Use a neural network to learn the Q function!
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DQL
Reinforcement Learning

http://www.youtube.com/watch?v=TmPfTpjtdgg
http://www.youtube.com/watch?v=W2CAghUiofY
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Actor Critic
Reinforcement Learning

● Actor: learns to maximize performance 
under critic
○ Trained with policy gradients

● Critic: learns to estimate action-values
○ Trained with Monte Carlo / TD updates

Basic recipe covers all modern model-free RL 
algorithms (e.g., SAC, PPO, TD3)

Source: Levine, S., et al. (2020). Deep Reinforcement Learning.



Uses pre-collected data to train a policy without needing to directly interact with the 
environment

Can greatly improve scale as data collection is cheaper than deployment
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Offline RL
Reinforcement Learning

Source: Levine, S., et al. (2020). Deep Reinforcement Learning.



Some approaches provide for mixing on-policy and off-policy data
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Mixed Online/Offline RL
Reinforcement Learning

Source: Kalashnikov, D., et al. (2018) QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation

http://www.youtube.com/watch?v=W4joe3zzglU&t=3


Research at Wayve
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● 2017: Founded in Cambridge
● 2019: Wayve was the first company to demonstrate an 

end-to-end learned driving system on UK public roads
● 2022: Demonstrated AI model driving multiple types of 

vehicles and in multiple cities across the UK
● 2023-Present: …
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History
Research @ Wayve
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http://www.youtube.com/watch?v=ekLdrrpmNXI&t=3


GAIA
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World Modelling
GAIA-1

Hu, A., et al. (2023). GAIA-1: A Generative World Model for Autonomous Driving. http://arxiv.org/abs/2309.17080
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http://www.youtube.com/watch?v=cwJ_TV9Daqo
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http://www.youtube.com/watch?v=GkNktnHy8-Q
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Extension to GAIA-1 demonstrated at CVPR 2024…

Controlling Dynamic Agents
GAIA-1
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Controlling Dynamic Agents
GAIA-1

Extension to GAIA-1 demonstrated at CVPR 2024…



PRISM + Ghost Gym
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Scene Reconstruction
Ghost Gym & PRISM

Zürn, J., et al. (2024). WayveScenes101: A Dataset and Benchmark for Novel View Synthesis in Autonomous Driving. https://arxiv.org/abs/2407.08280
Introducing PRISM-1: Photorealistic reconstruction in static and dynamic scenes. https://wayve.ai/thinking/prism-1/
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http://www.youtube.com/watch?v=IX4SmbmeeWo
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http://www.youtube.com/watch?v=6QM7feimDO0
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http://www.youtube.com/watch?v=9klERYE_FLo


LINGO
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Language
LINGO-1 & LINGO-2

Source: Marcu, A., et al. (2023). LingoQA: Visual Question Answering for Autonomous Driving.
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http://www.youtube.com/watch?v=EgkfZjZmPZQ
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http://www.youtube.com/watch?v=cpZHNH8_4Zg
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http://www.youtube.com/watch?v=mU3TFv9Zi4I
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Counterfactuals (GAIA + LINGO)
LINGO

Original Original

Injected Vehicle Injected Vehicle



Foundation Models
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● Examples
○ Language: GPT, Gemini, Llama
○ Vision: CLIP, DINO, JEPA, MAE
○ Embodied: OpenVLA,  π0

● Challenges
○ Many robotics tasks need great video features that include 3D/4D understanding!
○ Many robotics tasks require inference at > XX Hz frequencies!  
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Foundation Models Today
Foundation Models
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FMs ⇔ Robotics
Foundation Models

Black, K., et al. (2024). π0: A Vision-Language-Action Flow Model for General Robot Control.
Kim, M., et al. (2024). OpenVLA: An Open-Source Vision-Language-Action Model.

Open X-Embodiment Collaboration, et al. (2023). Open X-Embodiment: Robotic Learning Datasets and RT-X Models.



Parting Thoughts
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● Simple objectives perform surprisingly well when trained at scale (in terms of both 
model size and data corpus size)

● The trend across robotics is moving from modular systems to end-to-end systems, 
including our simulators

● Foundation models are increasingly becoming critical components of embodied 
systems

● Diversity, quantity, and quality of data is key to solving robotics
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Takeaways
Parting Thoughts



66



McCarthy, J., et al. (1955). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence.

Schuchmann, S. (2019). History of the first AI Winter.

Badrinarayanan, V., Kendall, A., Cipolla, R. (2015). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.

Radford, A., et al. (2021). Learning Transferable Visual Models From Natural Language Supervision.

Caron, M., et al. (2021) Emerging Properties in Self-Supervised Vision Transformers.

Srinivas, S., Fleuret, Francois. (2019). Full-Gradient Representation for Neural Network Visualization.

Wang, S., et al. (2023). DUSt3R: Geometric 3D Vision Made Easy.

Mur-Artal, R., et al. (2015). ORB-SLAM: a Versatile and Accurate Monocular SLAM System.

Waymo Team. (2016). Building maps for a self-driving car.

Levine, S., et al. (2020). Deep Reinforcement Learning.

Ross, S., et al. (2010). A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Achiam, J. Spinning Up.

Levine, S., et al. (2020). Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems.

Mnih, V., et al. (2013). Playing Atari with Deep Reinforcement Learning.

Kalashnikov, D., et al. (2018) QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation

Hu, A., et al. (2023). GAIA-1: A Generative World Model for Autonomous Driving.

Introducing PRISM-1: Photorealistic reconstruction in static and dynamic scenes. 

Zürn, J., et al. (2024). WayveScenes101: A Dataset and Benchmark for Novel View Synthesis in Autonomous Driving.

Marcu, A., et al. (2023). LingoQA: Visual Question Answering for Autonomous Driving. 

Black, K., et al. (2024). π0: A Vision-Language-Action Flow Model for General Robot Control.

Kim, M., et al. (2024). OpenVLA: An Open-Source Vision-Language-Action Model.

Open X-Embodiment Collaboration, et al. (2023). Open X-Embodiment: Robotic Learning Datasets and RT-X Models.

67

References

https://archive.computerhistory.org/resources/access/text/2023/06/102720392-05-01-acc.pdf
https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b
https://arxiv.org/abs/1511.00561
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/1905.00780
https://arxiv.org/abs/2312.14132
https://arxiv.org/abs/1502.00956
https://waymo.com/blog/2016/12/building-maps-for-self-driving-car/
https://berkeleydeeprlcourse.github.io/deeprlcourse/
https://arxiv.org/abs/1011.0686
http://spinningup.openai.com
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1806.10293
http://arxiv.org/abs/2309.17080
https://wayve.ai/thinking/prism-1/
https://arxiv.org/abs/2407.08280
http://arxiv.org/abs/2312.14115
https://www.physicalintelligence.company/download/pi0.pdf
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2310.08864

